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Toward immersed boundary simulation of high
Reynolds number flows

By Georgi Kalitzin and Gianluca Iaccarino

1. Motivation and Background

In the immersed boundary (IB) method, the surface of an object is reconstructed with
forcing terms in the underlying flow field equations. The surface may split a compu-
tational cell removing the constraint of the near wall gridlines to be aligned with the
surface. This feature greatly simplifies the grid generation process which is cumbersome
and expensive in particular for structured grids and complex geometries.
The IB method is ideally suited for Cartesian flow solvers. The flow equations written in

Cartesian coordinates appear in a very simple form and several numerical algorithms can
be used for an efficient solution of the equations. In addition, the accuracy of numerical
algorithms is dependent on the underlying grid and it usually deteriorates when the grid
deviates from a Cartesian mesh.
The challenge for the IB method lies in the representation of the wall boundaries and

in providing an adequate near wall flow field resolution. The issue of enforcing no-slip
boundary conditions at the immersed surface has been addressed by several authors by
imposing a local reconstruction of the solution. Initial work by Verzicco et al. (2000)
was based on a simple linear, one-dimensional operator and this approach proved to be
accurate for boundaries largely aligned with the grid lines. Majumdar et al. (2001) used
various multidimensional and high order polynomial interpolations schemes. These high
order schemes, however, are keen to introduce wiggles and spurious extrema. Iaccarino
& Verzicco (2003) and Kalitzin & Iaccarino (2002) proposed a tri-linear reconstruction
for the velocity components and the turbulent scalars. A modified implementation that
has proven to be more robust is reported in this paper.
The issue of adequate near wall resolution in a Cartesian framework can initially be

addressed by using a non-uniform mesh which is stretched near the surface. In this paper,
we investigate an unstructured approach for local grid refinement that utilizes Cartesian
mesh features.
The computation of high Reynolds number wall bounded flows is particularly chal-

lenging as it requires the consideration of thin turbulent boundary layers, i.e. near wall
regions with large gradients of the flow field variables. For such flows, the representation
of the wall boundary has a large impact on the accuracy of the computation. It is also
critical for the robustness and convergence of the flow solver.

2. Numerical Technique

The computational code IBRANS is based on the steady-state incompressible RANS
equations closed either with an one-equation turbulence model (Spalart & Allmaras
1994) or a two-equation model (Kalitzin & Iaccarino 2002). A second-order, implicit,
cell centered Cartesian discretization is used within a SIMPLE pressure-velocity coupling
algorithm with a segregated solution of the field equations (Ferziger & Peric 2002).
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The equations are discretized in three-dimensions with a typical 7-point stencil. In
this paper, however, we will refer for simplicity to the corresponding two-dimensional
equations. For each cell (i, j), the discretized field equation for momentum, turbulent
scalar and pressure correction can be written as:

anWφn+1W + anEφ
n+1
E + anSφ

n+1
S + anNφ

n+1
N + an(i,j)φ

n+1
(i,j) = sn(i,j) (2.1)

where the indices E,W,S,N denominate the neighboring cells that have a common face
with cell (i, j), e.g. E for cell (i+1, j) etc. The superscript n indicates the iteration. The
equation is under-relaxed implicitly to increase the diagonal dominance of the implicit
matrix. The Strong Implicit Procedure (SIP) by Stone (1968) is used for the solution of
(2.1).
The flow solver is set up as a virtual wind tunnel. The x-direction is the main flow

direction with inflow and outflow, the other directions have either the usual wall bound-
ary, symmetry or periodicity conditions. The domain is partitioned in x-direction and
the equations are solved in parallel using MPI. An object is placed into the flow domain
and the immersed boundaries, described in the next section, are applied to the velocity
components and the turbulence variables. There is no special treatment of the pressure
at the immersed boundary. The immersed boundaries affect the Poisson equation for the
pressure correction only through the source term which represents the divergence of the
velocity field. Thus, the Poisson equation is solved in the entire computational domain.
A parallel geometric multigrid is being used to accelerate the convergence of the Poisson
equation.
The non-uniform computational grid and the IB interpolation stencil is generated

automatically and the pre-processing time to start the computation is negligible. The
procedure is based on the ray tracing technique that allows one to identify the cells cut
by the immersed boundary. An initial coarse (and typically) uniform mesh is specified
by the user; a three-steps iterative procedure is employed: (a) tag the grid identifying
the cells cut by the immersed boundary, (b) split these cells in the direction that moves
the cell center closer to the immersed boundary, (c) regenerate a structured grid by
propagating the cell split to the domain boundaries, and restart from (a). This procedure
is repeated until a prescribed distance from the wall is achieved for all the interface cells.
The geometry definition is based on the StereoLitography format and therefore the CAD
model can be used directly.

3. Immersed Boundary Treatment

After the pre-processor detects the computational cells that are cut by the body, the
cells are divided in those that are inside and outside of the body as shown in Fig. 1.
The cut cells are separated in two type of cells corresponding to the location of their
cell center. The cells that have their cell center outside or on the surface are labeled as
interface cells. The other cut cells are treated like inside cells.
The flow variable φ, which represents a velocity component or a turbulence variable, is

set to zero in the inside cells. Note that the turbulence models considered have zero wall
boundary conditions for all turbulence variables. At the interface cells, the nearby wall
is modeled with an off wall boundary condition which in general consists of an implicit
linear interpolation stencil with an explicit (non-linear) correction.
A sketch of the linear interpolation algorithm is shown in Fig. 1a. Like the plotted tan-

gential velocity component, the scalar variable φ in the interface cell (i, j) is interpolated
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Figure 1. Schematic representation of interpolation algorithm for the tangential velocity. Gen-
eral case (left) and wall function approach for a grid aligned case (right). Tangential velocity:
−→ computed, −→ interpolated linearly on intermediate location, −→ imposed in interface cell.

using only the neighboring cells that are further away from the body. The interpolation
is carried out in two steps. First, for each neighboring cell an interpolation is carried out
normal to the wall to an intermediate location that has the same distance to the wall as
the interface cell center (i, j). This interpolation might be linear, quadratical or other,
depending on the near wall behavior of the considered variable. The second interpolation
is on a surface that is parallel to the wall. Here we use the inverse-distance weighted
method proposed by Franke (1982) that has the property of preserving local maxima
and producing smooth reconstructions. The interpolation of φ(i,j) in the interface cell is:

φ(i,j) =
∑

m

wmφ̃m/q with wm =

(

H − hm
Hhm

)p

, q =
∑

m

wm and p = 2 (3.1)

where φ̃m represents the previously interpolated values, hm is the distance between the
location of φ(i,j) and the location of φ̃m and H represents the maximum of the hm’s.
The sum is over all neighboring cells with m = W,E, S,N . The weights wm are zero
for all non-qualifying neighbors. For each interface cell the described linear interpolation
results in a set of weights βm which correspond to the effect of the neighboring cells on
the interface cell:

φ(i,j) = βWφW + βEφE + βSφS + βNφN (3.2)

By considering only the neighboring cells (W,E, S,N) that have a common face with
the interface cell (i, j) the linear interpolation (3.2) can easily be treated implicitly;
the implicit matrix of the discretized equation (2.1) can be modified with the weights
βm without introducing new diagonals with non-zero elements. The inclusion of other
neighbors such as corner cells in the interpolation stencil (3.2) can be done explicitly.
For a non-linear near wall behavior of φ an explicit correction ∆φcorr

(i,j) is added to the

right hand side of equation (3.2). This correction is computed as the difference of the
non-linear value of φ(i,j) and the linear interpolated value, both computed with values
from the current iteration.
The described interpolation can be applied to the velocity vector ~v without coupling
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implicitly the momentum equations for the Cartesian velocity components. For this, the
velocity components are transformed into a wall aligned 2-D coordinate system with
the axis pointed in the tangential ~t and normal ~n velocity direction: ~vn = (~v · ~n)~n and
~vt = ~v−~vn, respectively. The normal unit vector is obtained from the wall distance d as:
~n = ∇d/|∇d|. Both components vt and vn are interpolated according to their physical
behavior normal to the wall and using the interpolation (3.1) along the surface. The
tangential and normal velocity components in the interface cell are then rotated back
into the base Cartesian system. Because of linearity the weights β remain the same for the
Cartesian components. As before, the non-linearity is treated as an explicit correction.
For low Reynolds numbers, the near wall behavior of the tangential velocity is linear.

As plotted in Fig. 1a, the tangential component on the intermediate location for cell N is:
(ṽt)N = (vt)Nd(i,j)/dN . The corresponding quadratically interpolated normal component
is: (ṽn)N = (vn)Nd

2
(i,j)/d

2
N . For high Reynolds numbers, the near wall behavior of the

tangential velocity is in general non-linear and the value at the intermediate location is
determined with a non-linear procedure that utilizes adaptive wall functions.
In Kalitzin et al. (2003), an adaptive wall function concept has been developed for

body fitted grids and zero pressure gradient flow. These wall functions are independent
of the location of the first grid point above the wall. A look-up table provides an explicit
dependency of the friction velocity on the local Reynolds number. This look-up table
consists of cubic splines that approximate piecewise a solution obtained on a very fine
grid for a zero pressure gradient boundary layer flow. This universal law is written in
terms of the local Reynolds number Rey rather than in terms of y

+. The local Reynolds
number is defined asRey = U+y+ = Uy/ν. The look-up table is turbulence model specific
as the universal law varies slightly depending on the turbulence model. Similar look-up
tables provide the explicit dependency of the eddy-viscosity and turbulence variables
on the local Reynolds number or on the wall distance y+. The tables also include the
derivative of the velocity and turbulence variables.
In this paper, we only consider a high Reynolds number case in which the plate is

aligned but not coincident with the grid lines as shown in Fig. 1b. For zero pressure
gradient flows, the Navier-Stokes equations simplify near the wall to:

(ν + νt)
dU

dy
= u2τ (3.3)

In the current approach, the velocity in cell (i, j) is chosen such that the flux at the face
(i, j + 1

2 ) fulfills equation (3.3). The tangential velocity and the wall distance in cell N
define the local Reynolds number Rey which is related to the friction velocity uτ via the
adaptive wall function table. The friction velocity uτ and the distance between the face
(i, j + 1

2 ) and the wall allow to introduce a wall distance y
+ which determines an eddy-

viscosity value (νt)(i,j+ 1
2
). The discretized equation (3.3) defines the tangential velocity

in (i, j):

u(i,j) = uN −
u2τ

ν + (νt)(i,j+ 1
2
)

(dN − d(i,j)) (3.4)

This approach can not simply be generalized for a situation shown in Fig. 1a as the
tangential velocity in (i, j) is not uniquely determined by one single interface flux. For the
general non-aligned case we employ therefore a crude approach by simply extrapolating
of the tangential velocity component and eddy-viscosity using wall function information
about the derivative in cell N .
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Figure 2. Velocity magnitude for immersed boundary layers simulations on non-aligned grids,
Re = 1000, mesh with every 8th line plotted.

Immersed boundary results for a flat plate boundary layer at Re = 1, 000 are shown
in Fig. 2. The three simulations are carried out on uniform, non-aligned grids with a
different angle between the plate and the gridlines. The flow is laminar and y+ of the
first cell center is about 0.1. The case of 10o is the most challenging as the wall distance of
the first grid point above the wall fluctuates by moving in the streamwise direction along
the plate. There are about 30 cells in the boundary layer and 20 cells across the plate
resolving the cylindrical leading edge. The solution is nearly independent of the angle
between plate and gridlines as shown with the velocity magnitude contours in Fig. 2d



374 G. Kalitzin & G. Iaccarino

ξ

C
f

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0o

10o

45o

Body fitted

ξ

C
f

0 0.25 0.5 0.75 1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Adaptive wall function
Linear interpolation
Body-fitted

��� ���

Figure 3. Skin friction distribution for immersed boundary layer simulations over a flat plate
for various grid alignments for Re = 1000 (left) and for grid aligned case for Re = 106 (right)

and Fig. 2e. The contour lines for larger velocity values deviate slightly for the 45o what
is likely to be a numerical dissipation effect. However, the skin friction along the plate
matches remarkably well the body fitted solution shown in Fig. 3a.
In Fig. 3b, skin friction is reported for an immersed boundary simulation of a flat plate

boundary layer at Re = 106. The plate is aligned with the grid and the turbulent flow
is computed with the Spalart-Allmaras turbulence model. The wall distance y+ of the
first cell center above the wall is about 25. The results obtained using wall functions are
compared to the ones obtained using the simple linear interpolation and to a body fitted
solution. The skin friction levels for the linear interpolation are incorrect whereas the
wall functions results are in good agreement with the body fitted solution downstream
of ξ = 0.25. Upstream of this location, the discrepancy between the wall function and
body fitted result is related to the grid resolution and wall function implementation. The
resolution of the cylindrical leading edge is very coarse for this Reynolds number. The
grid is the same as the one used for the simulations in Fig. 2.

4. Local grid refinement

A new version of IBRANS with a local grid refinement capability is in development
for an efficient clustering of cells in the boundary layers. The present implementation
is an extension of the “classical” adaptive mesh refinement (AMR) technique to allow
non-isotropic refinement. It can also be interpreted as a generalization of the procedure
used for building coarse grids for geometric multigrid on structured meshes.
The basic idea was introduced in Durbin & Iaccarino (2002) for a finite difference

discretization. The AMR grid is considered as a coarsened version of an underlying,
structured grid; on this underlying grid the cells are defined (in two-dimensions) by a
couple of vertices with indices (i, j) and (i + 1, j + 1). On the AMR grid each element
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is bounded by the gridlines passing through the vertices (i, j) and (i + ∆i, j + ∆j).
The effective element size in the AMR grid is not constant (∆i 6= ∆j and both indices
depend on (i, j)). Therefore, the cells are not organized in a structured way with one-to-
one neighbors in each Cartesian direction. This requires a modification of the algorithm
to deal with hanging nodes. In Durbin & Iaccarino (2002) this was simply based on a
second-order interpolation. In the current finite volume implementation, flux conservation
is enforced and the algorithm resembles the unstructured face-based algorithm described
in Ferziger & Peric (2002) and, more closely, the AMR discretization used in Ham et

al. (2002). Each face-flux is computed using the two adjacent cells and for each cell
the fluxes (in general more than four) are collected to build the corresponding diffusive
and convective operators. In two dimensions, the implicit discretization yields a sparse
matrix with elements not organized in five diagonals as for its structured counterpart.
This complexity in the matrix structure prevents the use of the SIP procedure and a
Krilov-type algorithm with a simple Jacobi pre-conditioner was implemented. Standard
conjugate gradient is used for the pressure equation and the BiCGStab (Van den Vorst
1992) for the momentum and turbulent scalars.
The major advantage of the present approach with respect to classical OCTREE-

based (Berger & Aftosmis 1998) and fully-unstructured (Ham et al. 2002) schemes
lies in the economy and flexibility of storing and retrieving connectivity information due
to the underlying grid. In particular, only N cells are effectively defined on a Ni × Nj

underlying grid and they are defined by the two couples (i, j) and (i+∆i, j +∆j). The
total storage cost is 4N integers. In addition, an array of integers, ID(i,j), is defined
on the fine grid to store the correspondence between the underlying cell and the actual
AMR element. In other words, all the underlying cells included in the range (i, i+∆i−1)
and (j, j+∆j − 1) are tagged using the AMR cell number. The total storage required is,
therefore, Ni×Nj . The connectivity information for each cell are retrieved consistently to
a structured framework by indirectly querying the array ID(i,j). The neighbors of a AMR
cell are ID(i−1,k) and ID(i+∆i+1,k) for k ranging between j and j+∆j−1, in the positive
and negative i-direction respectively. It is evident that the approach handles multiple
hanging nodes for each cell and, eventually, allows to reconstruct additional connectivity
information without any increase in storage; for example it is straightforward to identify
all the vertex-based neighbors.
The generation of AMR grids is carried out by creating the underlying (fine) grid as

discussed before and then coarsening it in the region away from the immersed boundary.
The advantage of this approach is that all the cell tagging (ray tracing) can be performed
on a structured grid taking full advantage of the alignment of the cell centers and the
grid nodes. The coarsening and the generation of the connectivity information is the last
step of the grid generation process.
An example of the application of this procedure is shown in Fig. 4 where both the

underlying and the AMR grids are reported; note that the AMR grid contains only 9%
of the underlying cells. A sample calculation has been performed on both grids and it is
reported in Fig. 5 in terms of turbulent kinetic energy. The solution on the AMR grid
is remarkably smooth and consistent with the one obtained on the structured mesh. It
converges significantly faster as reported in Fig. 6. This is mainly due to a reduced aspect
ratio of the cells away from the immersed boundary. In terms of computational cost the
savings is about 70%.
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Figure 4. Computational grid for the flow around an airfoil. Structured, underlying grid on
the left with every second grid line plotted and locally refined grid on the right.

Figure 5. Turbulent kinetic energy for structured grid (left) and locally refined grid (right).
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Figure 6. Convergence history for structured grid (grey) and a locally refined grid (black).
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Figure 7. Turbine blade with internal cooling passages (a) and planar cuts through locally
refined grid: (b) cut near the tip, (c) cut near mid-span

The local grid refinement algorithm has been implemented in three-dimensions and
it works well even with very complex geometries as the real turbine blade shown in
Fig. 7. The blade is twisted and the internal cooling system of the blade consist of
extremely intricate passages with multiple serpentines, ribs, tip ejection holes, film cooling
holes, leading edge impingement, etc. Planar cuts through the locally refined grid are
shown in the same figure. A comparison between both cuts reveal a remarkable consistent
refinement in all internal flow regions. The local grid refinement also follows the twisted
outer surface of the blade.

5. Conclusions and future work

The paper presents details of a Cartesian immersed boundary method for RANS flow
simulations. It focuses on the IB implementation for mean flow and turbulence variables.
The immersed boundary is represented with an implicit, linear, off wall interpolation
with an explicit, non-linear correction. An extension of the method with adaptive wall
functions is presented for grid aligned cases. The paper also addresses the issue of flow
resolution at the immersed boundary and discusses a local grid refinement algorithm.
Skin friction distributions are presented for a boundary layer over a flat plate that

is non-aligned with the gridlines at Re = 1, 000. The results are nearly independent of
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the angle between the plate and the gridlines. For the grid aligned case, skin friction is
presented for a flat plate boundary layer at Re = 106.
Future work consists in continuing the development of IBRANS and combining the

described technologies into one mature computational code. The code is in the process of
being extended for conjugate heat transfer computations. The energy transport equation
has been implemented and it needs the development of appropriate heat transfer im-
mersed boundary conditions. The adaptive wall functions for immersed boundaries need
to be extended for general grids and heat transfer problems. It is planned to parallelize
and adapt the multigrid procedure for the flow solver with local grid refinement.
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